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A B S T R A C T

Spatial synchrony refers to the presence of a common signal for a time-varying characteristic that, in den-
drosciences, is shared among tree-ring chronologies from a particular area. Analysis and interpretation of syn-
chrony patterns in tree-ring networks is currently limited by: (i) the requirement for flexible modelling of
complex correlations and heteroscedastic errors and (ii) the availability of ready-to-use open software to fulfil
this task. We present an R package (DendroSync) that facilitates estimating and plotting synchrony patterns for
pre-defined groups. The package has been devised to work with traits derived from tree rings (e.g. ring-width),
but other data types are also suitable. It combines variance-covariance mixed modelling with functions that
quantify the degree to which tree-ring chronologies contain a common signal over a fixed time period. It also
estimates temporal changes in synchrony using a moving window algorithm. The functionality and usage of
DendroSync are illustrated using a simple example.

1. Introduction

Dendrochronological archives provide long-term records of tree
performance at varying spatial scales. The rising interest on the spa-
tiotemporal dependence of forest dynamics on environmental cues has
resulted in an increase of tree-ring networks worldwide (e.g. Barber
et al., 2000; Briffa et al., 2002, 2008; Babst et al., 2013; St. George,
2014). These networks may contain complex patterns of coordinated
(i.e. synchronous) temporal fluctuations in tree-ring signals. For in-
stance, it has been reported that there is a common variation in regional
tree-ring patterns engendered by correlated climatic forces and that the
strength of this common variation diminishes with increasing distance.
This phenomenon has received ample attention over the last decades
(e.g. Fritts, 1976; Feliksik, 1993; Rolland, 2002; Frank and Esper 2005;
Macias et al., 2006; Shestakova et al., 2016) and has been shown to be
species- and region-specific (Di Filippo et al., 2007; Trouet et al., 2012;
St. George, 2014; Shestakova et al., 2014, 2016). Hence, a natural
question arises as to how such coordinated responses are structured
across spatially disjunct stands (Rolland, 2002). Indeed, detailed ana-
lyses of coordinated patterns of tree-ring variability across geographical
scales is likely to provide further insights into the influence of local and
regional processes on the structure and function of forests. On the other
hand, the available methodological approaches to unravel the com-
plexities of tree-ring signals are still scarce.

In this context, spatial synchrony can be defined as the presence of a
relevant common signal for a time-varying trait (e.g. ring-width) in a
collection of tree-ring chronologies covering a particular area.
Traditionally, the strength of the common signal shared by tree-ring
series has been estimated through classical analysis of variance
(ANOVA) (i.e. fixed effects model; Fritts, 1976). The seminal paper by
Wigley et al. (1984) broadened the application of ANOVA in den-
drosciences by establishing the theoretical background for estimating
the uncertainty in the average common signal of a set of correlated
series. Time series of indexed ring widths were described in terms of
variance components of several random effects (Wigley et al., 1984).
Indeed, tree-ring data are often better defined through a mixed model
setting because of the associated random sources of variation, e.g. those
associated with measurements repeated in time (Jennrich and
Schluchter, 1986). Once the time (year) factor is taken as a random
variable, inferences about the entire population of years can be derived
from the estimation of the inter-annual variance common to a set of
chronologies for a trait of interest. Hence, the proportion of common
variance, or intra-class correlation, estimates the extent of coordinated
(or synchronous) fluctuations among chronologies (Shestakova et al.,
2014).

Synchrony patterns across geographical scales (i.e. from plots to
continents) can be better disentangled and interpreted by grouping
chronologies into potentially homogeneous subsets (e.g., Babst et al.,
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2013; Shestakova et al., 2014). For instance, contrasting physiological
responses between species or across regions may cause differential
forest reactions to environmental conditions that remain registered in
tree rings (de Luis et al., 2013; Galván et al., 2014). Factors such as
phylogeny, geographical proximity or functional similarity may un-
derlie different patterns of synchrony in a particular area. Shestakova
et al. (2014) presented a mixed model framework to disentangle spatial
patterns of tree-ring signals that was applied using proprietary soft-
ware. This methodology allows assessing to what extent temporal re-
sponses are spatially structured by partitioning the variability asso-
ciated to the time effect at intra- and inter-group levels. By applying
different grouping criteria, temporal signals of different strength,
shared within and between the subsets, can be quantified by variance-
covariance mixed modelling. This framework has proved to be well
suited to interpret synchrony patterns in tree-ring networks ranging
from local (Shestakova et al., 2017) to sub-continental scales
(Shestakova et al., 2016). However, broad analyses of such synchrony
patterns are currently limited because of lack of non-proprietary soft-
ware tools.

Despite their potential ecological applications, mixed models to
study spatially structured tree-ring records are not yet broadly in use.
Here, we present ‘DendroSync’ (Alday et al., 2017, CRAN: DendroSync),
a package for the open-source R statistical environment (R
Development Core Team, 2016) that facilitates the analysis and inter-
pretation of synchrony patterns existing in tree-ring networks. Den-
droSync is based upon previously described methods (Shestakova et al.,
2014). The package contains a suite of customizable functions that
allow (i) evaluating and plotting complex patterns of synchrony for
tree-ring traits over a given time period at within- and between-group
levels that are pre-defined by the user and (ii) assessing temporal
changes in those patterns using a moving window algorithm that di-
vides the whole period of study into shorter sub-periods. We begin by
describing the package functionality. We then provide an illustrative
example and indicate where the package is available for download.
Finally, we conclude by providing a general outlook of the package.

2. Package functionality

The package DendroSync quantifies synchrony across ring-width
chronologies (or other tree-ring traits) for (i) a fixed time period defined
by the user (i.e. at sub-centennial or centennial scales) and (ii) a moving
time window that pre-defines intervals within the study period for
which synchrony estimates are obtained independently (e.g. 30-year
window). We note that this package can accommodate various time
series datasets apart from tree rings, but it was originally devised to be
used in a dendrochronological framework.

The package workflow is illustrated in Fig. 1. Following Shestakova
et al. (2014, 2016), the package contains three function types: (i)
functions to fit and, afterwards, select variance-covariance (VCOV)
models based on goodness-of-fit statistics using a user-defined grouping
criterion for any given tree-ring dataset; (ii) functions to calculate
synchrony at within- and between-group levels from the selected VCOV
models for the whole study period and (iii) functions to calculate
temporal changes in synchrony using moving-window intervals across
the time series. Appropriate plotting functions of synchrony patterns at
within- and between-group levels for the whole period and of temporal
changes in synchrony across sub-periods are also available. In total, 15
different functions are implemented, but nine are mainly for internal
use (Fig. 1).

2.1. Data handling

The package DendroSync has been designed to work with residual
indices of tree-ring width (TRW) chronologies that may partly overlap,
hence covering a given period. To obtain indexed chronologies we re-
commend the use of high-pass filter algorithms. In this way, biological

growth trends are eliminated while a common variance at inter-annual
time scales is potentially preserved across chronologies (i.e. high-fre-
quency variability related to climate or other external drivers of tree
performance). The package can also handle other ecological data in
which long-term trends and temporal autocorrelation have been pre-
viously removed (e.g. tree-ring traits such as isotopic series or density
measurements, climatic time series, remote sensing derived data, etc.).
The input data must be formatted as a data frame with TRW (response
variable), time and grouping variables as columns. The time variable is
used to specify the years to be included in the analyses, and the
grouping variable defines the grouping criterion applied to stratify the
dataset of chronologies into subsets for analysis of synchrony patterns
at both within- and between-group levels. A variable coding for a
chronology factor (Code) should also be included to account for the
effect of series (fixed) in the model. However, if time series vary around
the same mean (as in the case of indexed ring-width chronologies), the
variable Code becomes redundant and can be saved. In this case, the
model turns into a random effects model. Missing values can be re-
ported as NA.

2.2. Variance-covariance model selection

The first step to calculate synchrony values of indexed TRW
chronologies for a grouping variable over a fixed time period (Fig. 1) is
the selection of the best VCOV model. The function dendro.varcov fits
seven VCOV models relating TRW against specific names of tree-ring
width chronologies (TRW∼ Code) or, alternatively, the VCOV models
can be fitted without code identification of chronologies if they are
centred on the same mean value (TRW∼ 1). Whatever the choice, time
and grouping variables are modelled using positive-definite matrices
(?pdClasses) to characterize synchrony for each level of the grouping
variable and also across pairwise combinations of levels (i.e. within-
and between-group synchrony). The function returns the following
VCOV model outputs (Shestakova et al., 2014): a null positive-definite
matrix structure (mBE; broad evaluation), and the homoscedastic and
heteroscedastic (homoscedastic=TRUE or FALSE) versions of a diag-
onal positive-definite matrix structure (mNE, mHeNE; narrow evalua-
tion), a positive-definite matrix with compound symmetry structure
(mCS, mHeCS; compound symmetry) and a general positive-definite
matrix structure (mUN, mHeUN; unstructured). Briefly, broad evaluation
ignores the existence of groups so the year variance is constant at the
within- and between-group levels; narrow evaluation tests for lack of
common signals between chronologies belonging to different groups
(i.e. covariances are set to zero); compound symmetry fits homogeneous
year variances across groups and homogeneous covariances across
pairwise combinations of groups; finally, unstructured allows for het-
erogeneous variances and covariances. The heteroscedastic variants of
these VCOV models arise from allowing the residual variance to vary
among groups. Afterwards, the function mod.table provides a table
comparing VCOV models by Akaike’s Information Criterion (AIC),
corrected AIC (AICc) and Bayesian Information Criterion (BIC) in the
smaller-is-better form (Burnham and Anderson, 2002). Based on these
criteria the best fitting VCOV model can be selected from this table.

2.3. Synchrony estimation

The function sync estimates synchrony from a previously selected
VCOV model, amongst those produced by dendro.varcov. A modname
argument is included in sync function to select one among the seven
models of interest (mBE, mNE, mHeNE, mCS, mHeCS, mUN, mHeUN).
The output lists synchrony estimates at the within- and between-
grouping variable levels, quantifying the degree to which the values of
chronologies contain a common signal. A standard error (SE) of each
synchrony estimate is also included. This output can be directly used as
input for the sync.plot function where dot plots of within- and between-
grouping variable synchrony are produced. These dot plots are used to
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represent synchrony values (and their SEs) obtained for each level of
grouping variable and also for pairwise combinations of levels (i.e.
within- and between-group synchrony).

2.4. Temporal changes in synchrony using a moving time window

The function sync.trend provides information on changes in syn-
chrony over time. This function estimates synchrony in TRW data for
particular time periods using a moving time window as described in
Shestakova et al. (2016). By default, the time variable is split in ob-
servation windows of 30 years that are lagged 5 years; the set of VCOV
models fitted by dendro.varcov are then generated for each window.
The sync.trend function uses the same data input as the dendro.varcov
function. Afterwards, sync.trend chooses, for each time window, the
best VCOV model based on the information criterion selected between
“AIC”, “AICc” or “BIC” (selection.method). Then, the selected model is
used to calculate the within- or between- grouping variable levels
synchrony for each time window.

The output of sync.trend function consists of a data frame in-
dicating, for each time window, the best fit model, the information
criterion used, the within- or between-group synchrony and the mean
time point for each window (varTime). The function sync.trend is very
flexible and can be customized using internal arguments. For example,
the window width and lag can be specified using arguments window
and lag respectively. Also, the user can customize the type of in-
formation criterion used for model selection (selection.method), whe-
ther the models are homoscedastic or heteroscedastic (homoscedastic),
and whether between-group synchrony is evaluated or not (be-
tween.group). The sync.trend output can be directly used for plotting
synchrony trends using the function sync.trend.plot. This plotting
function creates line charts showing synchrony changes across selected
time windows at the within- and between-group levels (and their
standard errors as colour ribbons). One of the strengths of DendroSync
is that either single period synchrony or synchrony trend outputs can be
used in further analyses relating synchrony values to their potential
external drivers, e.g. through linear mixed models or correlation

analyses (for an example, see Shestakova et al., 2016).

3. Illustrative example

The package DendroSync includes a dataset of 30 tree-ring width
chronologies of conifer species compiled from Shestakova et al. (2016).
The sampling sites are distributed along a latitudinal gradient (ca.
37–43°N) across Spain with the following species representation: Abies
alba Mill., Pinus nigra subsp. salzmannii (Dunal) Franco and Pinus syl-
vestris L (Fig. 2). Residual TRW chronologies were obtained using
standard dendrochronological techniques (Cook and Kairiukstis, 1990)
and covered the period 1950–1999 (CRAN: DendroSync) (Fig. 2). Par-
ticularly, ring-width measurements were converted to site chronologies
of ring-width indices by applying detrending and autocorrelation re-
moval with the Friedman supersmoother spline (Friedman, 1984) and
autocorrelation modelling. This procedure aimed at eliminating biolo-
gical growth trends but preserving high-frequency variability poten-
tially related to climate (Fritts, 1976).

This dataset can be potentially stratified following either taxonomic
(i.e. species grouping) or geographic (i.e. regional grouping) criteria
(Fig. 2). Synchrony patterns at species level have been previously re-
ported in Shestakova et al. (2016). Instead, we use here the regional
grouping to illustrate the functionality of the package. This analysis can
be useful to evaluate whether warming-induced effects on forests (e.g.
an increasing impact of drought) are homogenising climate responses of
trees between and within regions, as previously reported at the local
level for the Iberian peninsula (Shestakova et al., 2017). In this ex-
ample, ring-width chronologies are classified into three groups ac-
cording to their latitudinal position across Spain as follows: ‘north’ (14
sites), ‘centre’ (10 sites) and ‘south’ (6 sites). Here we characterize re-
gional patterns of synchrony by (i) modelling between- and within-
group variability over the whole length of TRW chronologies
(1950–1999 period), and (ii) evaluating temporal changes in synchrony
for successive time intervals over this period.

Fig. 1. Workflow and overview of the main functions
included in the package DendroSync. Two main ap-
proaches are described independently: A) calculating
synchrony over a fixed time period and B) calcu-
lating temporal changes in synchrony for fixed time
windows.
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3.1. Calculating synchrony over a fixed time period

In this section, we describe how synchrony is estimated at within-
and between-group levels over the whole time span covered by the tree-
ring chronologies (i.e. over a fixed time period; Fig. 1). First, the da-
taset, named ‘conifersIP’, should be called by typing data(conifersIP) in
the R console (the first rows can be viewed using head(conifersIP)).
After loading the data, restricted maximum likelihood (REML) estima-
tion of variance components for each model is obtained using den-
dro.varcov function:

> data(conifersIP)
> head(conifersIP)
>ModHm< - dendro.varcov(TRW∼ Code, varTime= “Year”,

varGroup= “Region”, data= conifersIP, homoscedastic=TRUE)
>ModHt< - dendro.varcov(TRW∼ Code, varTime= “Year”,

varGroup= “Region”, data= conifersIP, homoscedastic= FALSE)
>mod.table(ModHm)
>mod.table(ModHt)
The formula argument of dendro.varcov relates TRW against spe-

cific names of tree-ring width chronologies (Code). Here, we can use a
simplified model (TRW∼ 1) instead of fitting a Code effect since
chronologies are centred on the same mean value. The output provided
is in any case equivalent. The arguments varTime= “Year” (random
term) and varGroup= “Region” (fixed term) indicates the variables
used to fit the variance-covariance matrices. Homogeneity of residual
variance is a main assumption of standard ANOVA, and conclusions on
varTime× varGroup interactions may not be appropriate if this as-
sumption is not fulfilled. The structure of error variances can be spe-
cified within the argument homoscedastic, which indicates whether
homoscedastic (TRUE) or heteroscedastic (FALSE) variants of VCOV
models should be fitted.

The output of this function, in this case named ModHm for homo-
cedastic models and ModHt for heteroscedastic models, is a list con-
taining information for each fitted model and can be directly used as
input in mod.table. This function creates a table of restricted log-like-
lihood values for each model and derives goodness-of-fit criteria such as
AIC, AICc and BIC (Table 1). Here, we consider models with substantial
support to be those in which the difference of either AIC or BIC between
models is< 2 (Raftery, 1996; Burnham and Anderson, 2002). This
difference corresponds to the information loss experienced if using an
alternative model instead of the best-fit model for inference (Burnham

and Anderson, 2002).
In this example, the AIC and BIC criteria pointed to the presence of

differential ring-width signals across the three regions because the null
model (mBE), which ignores the presence of groups, obtained the least
support (i.e., largest AIC and BIC values). Moreover, the narrow eva-
luation model (i.e. testing for lack of a common spatial signal shared
across pre-defined groups) also showed higher AIC and BIC values (i.e.
poorer fitting) relative to other alternative models that account for the
presence of shared variability among groups. This was expected from
previous work because trees growing in neighbouring regions are likely
to share similar climatic influences, as shown for distances of up to
1000 km in the Iberian Peninsula (Shestakova et al., 2016). Instead, the
compound symmetry model with heteroscedastic errors provided the
best fit according to AIC and BIC (mHeCS, Table 1). This output sug-
gests that the magnitude of common ring-width signals is region-de-
pendent, since the residual variation was distinct for each group. It also
indicates the presence of significant ring-width fluctuations that are
common across regions.

The user selected model (mHeCS) is then used as input in sync

Fig. 2. Distribution of sampling sites across Spain.
Coloured circles denotes regions: north (blue), centre
(green) and south (red). Genus symbols are as fol-
lows: Abies alba (circle), Pinus nigra (square) and
Pinus sylvestris (triangle). (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Variance-covariance model comparison for 30 tree-ring width chronologies from the
Iberian Peninsula (as provided by DendroSync) according to restricted log-likelihood
(LogLik) statistics: Akaike’s Information Criterion (AIC), corrected AIC (AICc) and
Bayesian Information Criterion (BIC). AIC, AICc and BIC are in smaller-is-better form. n is
the number of observations used in the model fit and df is the degrees of freedom related
with the number of parameters in the fitted model. The model of choice is shown in bold.

Model* n df AIC AICc BIC LogLik

Homoscedastic
mBE 1461 32 −1301.6 −1300.2 −1133.1 −1365.6
mNE 1461 34 −1327.2 −1325.6 −1148.2 −1395.2
mCS 1461 34 −1369.9 −1368.3 −1190.9 −1437.9
mUN 1461 37 −1371.4 −1369.5 −1176.5 −1445.4

Heteroscedastic
mBE 1461 32 −1301.6 −1300.2 −1133.1 −1365.6
mHeNE 1461 36 −1350.1 −1348.3 −1160.5 −1422.1
mHeCS 1461 35 −1395.3 −1393.5 −1210.9 −1465.3
mHeUN 1461 39 −1394.2 −1392.1 −1188.8 −1472.2

* Model abbreviations: Broad Evaluation model, mBE; Narrow Evaluation model,
mNE; Compound Symmetry model, mCS; Unstructured model, mUN; heteroscedastic
variant of mNE, mHeNE; heteroscedastic variant of mCS, mHeCS; heteroscedastic variant
of mUN, mHeUN.
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function to derive estimates of synchrony at within- and between-group
levels (referred to as âC, following Wigley et al., 1984 and Shestakova
et al., 2014) for the corresponding VCOV structure:

> bestmod< - sync(ModHt, modname= “mHeCS”)
Synchrony values can also be plotted using the following code:
> sync.plot(bestmod)
The sync function needs to include a dendro.varcov output object,

here ModHt, to retrieve information on VCOV models, while the
modname argument is needed to specify which model from ModHt is to
be used to calculate synchrony, here “mHeCS”. The sync output, in this
case named bestmod, can be inspected for synchrony values or, instead,
can be directly used as input in sync.plot to create within- and between-
group synchrony dot plots with error bars (Fig. 3). In this example, the
selected model (compound symmetry with heteroscedastic error var-
iances) provides support for higher synchrony among chronologies of
the north of Spain compared with those from the other two regions,
hence suggesting a stronger climate forcing in the north. As expected,
the extent of synchronous growth is lower at the between-region than at
the within-region level; however, differences in between-region syn-
chrony do not follow a pattern of geographic distance (i.e. more distant
regions do not show less synchronous growth) (Fig. 3). Such patterns of
common variability shared by TRW chronologies can provide valuable
insights into the biogeographical organization of tree-ring signals. That
is, through VCOV modelling one may test hypotheses on contrasting
growth patterns across groups of chronologies that are known or that
can be defined based on existing or a priori knowledge. In contrast,
multivariate approaches (e.g. principal component or factor analysis)
are widely used to infer a posteriori patterns of common growth in tree-
ring networks, that is, based on the tree-ring records themselves (e.g.
Peterson and Peterson 2001; Andreu et al., 2007).

For further analyses, âC values over the whole time period derived
from sync function can be accessed by typing “bestmod”.

3.2. Calculating temporal changes in synchrony for fixed time windows

Temporal changes in synchrony can also be easily obtained and
plotted by combining two functions: sync.trend and sync.trend.plot. An
example code to execute these functions reads:

> reg.trend< - sync.trend(TRW∼ Code, varTime= “Year”,
varGroup= “Region”, homoscedastic= FALSE, data= conifersIP,
window=30, lag= 5, null.mod=FALSE, selection.method= c
(“BIC”), all.mod= FALSE, between.group=FALSE)

> sync.trend.plot(reg.trend)
The first four function arguments of sync.trend are identical to those

of dendro.varcov, namely the formula argument (TRW∼ Code), the
time variable (varTime), the grouping variable (varGroup), and whe-
ther homoscedastic or heteroscedastic models should be defined
(homoscedastic). In addition, the arguments window and lag are used
to set the moving window interval and time lag over which the âC va-
lues are calculated. By default, they are set to 30 and 5 years, respec-
tively. The null.mod argument specifies whether only the broad eva-
luation model (TRUE) or also more complex VCOV structures (FALSE)
will be evaluated. The selection.method argument indicates the good-
ness-of-fit criteria used to select the best VCOV model, here “BIC”. The
all.mod argument specifies whether both homoscedastic and hetero-
scedastic types of models are fitted in the same analysis (TRUE) or,
instead, if only the type of models selected with the argument homo-
scedastic (homoscedastic or heteroscedastic) are fitted (FALSE). The
first option is useful to assess changes in the structure of error variances
of the fitted models over time.

The sync.trend output, a data.frame called “reg.trend” here, can be
directly used to plot changes in synchrony with sync.trend.plot func-
tion. In this example, sync.trend.plot creates a plot showing temporal
changes in synchrony at the within-group level (Fig. 4a). By setting the
sync.trend argument between.group to TRUE, a plot showing between-
group level temporal trends of âC values is also produced (Fig. 4b). This
function is useful to visualise changes in synchrony over time and at

Fig. 3. Example of a dot plot created with the
sync.plot function. Synchrony estimates (âC) for 30
tree-ring width chronologies originated from the
Iberian Peninsula are calculated for the best var-
iance-covariance model (see Table 1) at (a) within-
group and (b) between-group levels over the period
1950–1999. Grouping of chronologies is based on
geographic classification (north, centre and south).
Error bars depict standard errors (SE).

Fig. 4. Example of a plot created with the sync.-
trend.plot function. Synchrony estimates (âC) for 30
tree-ring width chronologies originated from the
Iberian Peninsula at (a) within-group and (b) be-
tween-group levels are calculated for the best model
for 30-year moving intervals lagged by 5 years over
the period 1950–1999. The x-axis shows the central
year of the moving time interval. Grouping of
chronologies is based on geographic classification
(north, centre and south). Shadows are standard er-
rors (SE).
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different levels (i.e. within and between groups). In this example,
growth synchrony increases over the period 1950–1999 at the between-
group level, suggesting a strengthening of drought-induced growth
limitations (Shestakova et al., 2016) (Fig. 4b). At the within-group
level, conversely, only the central region shows a slight increase in
synchrony (Fig. 4a). For further analyses, temporal changes in âC values
across sub-periods derived from sync.trend function can be accessed by
typing “reg.trend”.

4. Package availability

DendroSync can be directly downloaded from the Comprehensive R
Archive Network website (CRAN: https://CRAN.R-project.org/
package=DendroSync). It can be installed from the R console by
typing ‘install.packages(“DendroSync”)’ or, alternatively, by using the
install packages menu. Once installed, users have access to the package
documentation explaining the main package functions (Readme) and
also to the reference manual (DendroSync.pdf) containing code ex-
amples for all functions. The package documentation is also accessible
from the R console using the command ‘?any.function’ (e.g. ‘?sync’ to
access sync function documentation and examples). DendroSync de-
pends on the R packages “nlme” (CRAN: nlme; Pinheiro et al., 2016)
and “ggplot2” (CRAN: ggplot2; Wickham, 2009).

5. Outlook

Unravelling the complexities of forest dynamics at large geo-
graphical scales is becoming a major priority of global-change research,
and tree-ring records have emerged as very valuable data (Babst et al.,
2017). DendroSync is a comprehensive tool to assess synchrony pat-
terns from dendrochronological data using a set of customizable func-
tions. Alternative R packages suitable for synchrony evaluation com-
pute correlation matrices and related statistics such as variograms, and
also plot spatial trends using correlograms (CRAN: Gouhier and
Guichard, 2014, “synchrony” and Bjornstad, 2016, “ncf”). However, the
main singularity of DendroSync is that it uses VCOV models to test for
synchrony patterns within and between groups that are pre-defined by
the user, thus providing synchrony estimates for the VCOV model that
best approximates the data; besides, it plots temporal changes in syn-
chrony within and between groups using a moving window algorithm.
The DendroSync output can be complemented with the information
generated by these alternative R packages, such as spatial correlograms
as shown in Shestakova et al. (2016). The information provided by
DendroSync can contribute to improve our understanding of how eco-
logical factors determine tree performance across environmental gra-
dients. Similarly to tree-ring traits, the package can handle other eco-
logical records but the response variable should be previously corrected
for long-term (e.g. inter-decadal) trends and autocorrelation. The out-
puts from synchrony functions are data-frames that can be used in
further statistical analyses. Consequently, the DendroSync package,
although tailored for the analysis of tree-ring records, is useful to unveil
patterns of synchrony in miscellaneous ecological data using pre-de-
fined grouping criteria. New functions and examples will be im-
plemented in the future based on methodological refinements and
suggestions of the research community (see https://josucham@
bitbucket.org/josucham/dendrosync.git where development versions
are available).
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